Una pulce può saltare con una forza pari a 135 volte il suo peso. Superman riesce con singolo balzo a saltare su un grattacielo di 300m. Supponiamo che abbia una massa di 80.0 kg e imprima forza costante F per un decimo di secondo.
- Calcola la velocità iniziale del salto di Superman.
- Calcola la minima forza F con cui deve saltare Superman per raggiungere la sommità del grattacielo (considera che raggiunga la cima del grattacielo con velocità pari a zero e trascura gli attriti)
- Una pulce potrebbe realizzare la stessa prestazione?
Schematizziamo la situazione:
Il salto di Superman si compone di 2 moti uniformemente accelerati:
- Superman accelera da velocità 0 a velocità vo imprimendo la F sul terreno per un decimo di secondo
- Superman staccatosi dal suolo Superman è frenato dall’accelerazione di gravità dalla velocità vo a velocità nulla con cui arriva in cima al grattacielo.
Per risolvere la situazione calcoleremo
- con quale velocità vo superman i deve staccare dal suolo per raggiungere la sommità del grattacielo; (punto 2 precedente)
- _ successivamente potremo calcolare quale accelerazione, e dunque quale forza Superman deve fare nel salto (punto 1 precedente)
- infine faremo il rapporto tra questa forza e la forza peso di superman per vedere se la prestazione di superman è migliore o peggiore di quella della pulce
Leggi del moto uniformemente accelerato:
Nel moto in questione diventano:
con accelerazione di gravità;
Dalla prima equazione trovo da sostituire nella prima per ottenere
dunque, sostituendo nella seconda
da cui
perciò:
Ora dobbiamo calcolare l’accelerazione necessaria a produrre questa velocità in un decimo di secondo; pplichiamo la legge della velocità per il moto rettilineo uniforme con velocità iniziale nulla e velocità finale la velocità appena calcolata con :
quindiQuesta è una accelerazione notevole, come si può notare confrontandola con .
Calcoliamo ora la forza che deve produrre Superman per ottenere tale accelerazione, applicando il secondo principio della dinamica.
Teniamo conto del fatto che egli deve contrastare anche il suo peso:
Infine, calcoliamo il rapporto tra questa forza e il suo peso:
La forza richiesta a Superman è solo 79 volte il suo peso, mentre la pulce è capace di esercitare una forza pari a 135 volte il suo peso
SUPERPULCE