UAM calculations

Calculating the average acceleration from the change in speed $\quad a_{a v}=\frac{\Delta v}{\Delta t}$

1. A car takes 6 seconds to accelerate from 0 to $30 \mathrm{~m} / \mathrm{s}$; calculate the acceleration.
2. A car is travelling at $10 \mathrm{~m} / \mathrm{s}$ accelerates to make an overtaking; in two seconds it reaches the speed of $20 \mathrm{~m} / \mathrm{s}$; calculate the acceleration.
3. A car is travelling at $25 \mathrm{~m} / \mathrm{s}$; at one moment it starts breaking and stops after 5 seconds. Calculate the acceleration.
4. A ball is thrown upwards with a speed of $9.8 \mathrm{~m} / \mathrm{s}$. After 2 seconds it is falling down at the same speed but in the opposite direction. Calculate the acceleration.

Calculating the final speed from acceleration

$$
v=v_{o}+a \Delta t
$$

5. A motorbike is travelling at $10 \mathrm{~m} / \mathrm{s}$ and accelerates with an acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$; calculate the speed after 3 seconds.
6. A ball falls down from rest. Assuming the acceleration of gravity equals to $9.8 \mathrm{~m} / \mathrm{s}^{2}$ calculate its speed in m / s and km / h after 4 tenths of second.
7. A ball is thrown upwards with a speed of $9.8 \mathrm{~m} / \mathrm{s}$. Assuming the acceleration of gravity equals to $9.8 \mathrm{~m} / \mathrm{s}^{2}$ calculate its speed after half a second.
8. A car is travelling at $25 \mathrm{~m} / \mathrm{s}$; at one moment it starts breaking with a decelaration of $3 \mathrm{~m} / \mathrm{s}^{2}$. Calculate the speed after 4 seconds.

Calculating the displacement from acceleration and elapsed time

$$
\Delta s=v o \Delta t+\frac{1}{2} a \Delta t^{2}
$$

9. Calculate the displacement for the car of exercise 1
10. Calculate the displacement for the car of exercise 2
11. Calculate the displacement for the car of exercise 3
12. Calculate the maximum height reached by the ball of exercise 4

Calculating the time from acceleration and displacement

$$
\Delta t=\sqrt{\frac{2 \Delta s}{a}}
$$

13. A ball falls down from rest and an height of 1.5 m . Assuming the acceleration of gravity equals to $9.8 \mathrm{~m} / \mathrm{s}^{2}$ calculate the time it takes to reach the ground.

Combining the law of speed and the low of displacement $\Delta s=v o \Delta t+\frac{1}{2} a \Delta t^{2} ; \quad v=v_{o}+a \Delta t$
14. A car travelling at $30 \mathrm{~m} / \mathrm{s}$ starts breaking and stops after 150 m ; calculate the acceleration of the breaking and the time needed (write down staring speed and final speed; calculate the time from the speed equation and substitute it in the displacement equation to find the acceleration; now calculate the time with the first equation)

